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SUMMARY

An enhanced solution strategy based on the SIMPLER algorithm is presented for low-Peclet-number mass
transport calculations with applications in low-pressure material processing. The accurate solution of highly
diffusive ¯ows requires boundary conditions that preserve speci®ed chemical species mass ¯uxes. The
implementation of such boundary conditions in the standard SIMPLER solution procedure leads to degraded
convergence that scales with the Peclet number. Modi®cations to both the non-linear and linear parts of the
solution algorithm remove the slow convergence problem. In particular, the linearized species transport
equations must be implicitly coupled to the boundary condition equations and the combined system must be
solved exactly at each non-linear iteration. The pressure correction boundary conditions are reformulated to
ensure that continuity is preserved in each ®nite volume at each iteration. The boundary condition scaling
problem is demonstrated with a simple linear model problem. The enhanced solution strategy is implemented in
a baseline computer code that is used to solve the multicomponent Navier±Stokes equations on a generalized,
multiple-block grid system. Accelerated convergence rates are demonstrated for several material-processing
example problems. # 1997 by John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 25: 225±243 (1997).

No. of Figures: 17. No. of Tables: 3. No. of References: 24.

KEY WORDS: Navier±Stokes; low Peclet number; chemical vapour deposition; low Mach number; ®nite volume

1. INTRODUCTION

Numerical simulation is a useful tool for studying heat and mass transfer in gas phase manufacturing

of thin ®lm materials. Numerical models predict the uniformity and deposition rate of material

coatings and help design reactors and processes. Many applications occur at low pressures, such as

etching and chemical vapour deposition.1,2 Chemical diffusivities become large at low pressure and

the Peclet number for mass diffusion becomes small. Segregated solution algorithms based on the

SIMPLER algorithm3 are commonly used for chemical vapour deposition modelling.4±6 Though they

can be slow, they are desirable for their simplicity and economic use of computer resources.

Unfortunately, as the Peclet number decreases, such methods show markedly poor convergence rates.

Increased coupling between equations improves convergence for some ¯ow regimes, as discussed

in the review by Patankar.7 Fully coupled methods1,8 are used for reacting ¯ow, but at the cost of

storing large matrices. For many applications the coupled species transport equations are split from

the heat and momentum equations.9,10 For highly diffusive problems, equation coupling is not as

important as spatial coupling. Convergence is degraded at low Peclet number by poor numerical
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propagation of information between physical boundaries. Dif®culties arise at the in¯ow boundary

where convection must balance diffusion to preserve speci®ed species mass ¯uxes. Information

propagates very slowly from such a boundary for a particular class of segregated solution algorithms

with explicit updating of boundary conditions. Boundary condition equations should be implicitly

coupled to interior equations with complete solution of the resulting linearized system.

The focus of this article is to both explain the physical processes that adversely affect the

convergence rate of the SIMPLER algorithm at low Peclet number and modify the solution algorithm

accordingly. The modi®cations to the solution algorithm are demonstrated by enhancing the

convergence of a baseline computational ¯uid dynamics (CFD) code called CURRENT. The

CURRENT code is an extensive reformulation of the TEACH11 code by Evans.4,12 He recast the

governing equations in terms of a generalized body-®tted co-ordinate system with multiple-block grids

and implemented multicomponent transport with gas phase and surface phase chemical reactions.

It will be shown that strengthening the coupling between physical boundaries and across internal

grid block boundaries in the baseline code greatly enhances convergence. Furthermore, convergence

rates are improved with only modi®cations to the species and pressure correction algorithms. The

solution algorithm enhancements affect both the non-linear and linear parts of the SIMPLER

algorithm. The non-linear part is modi®ed by including the boundary condition equations in the

linearization of the transport equations. Implicit coupling of boundary conditions allows the

boundaries to directly communicate at each iteration, but only if the linearized system is fully solved.

It is during the solution of the linear problem that information is numerically propagated. The

convergence of the linear problem is accelerated by adding a matrix-free13 gradient algorithm to the

line relaxation scheme. The bene®t of the matrix-free method is that implementation requires only

minor modi®cations to the existing CURRENT code. The solution of the continuity equation must

also be modi®ed to keep up with the improved species algorithm.

The following sections discuss the transport equations, the baseline code and the developments

which lead to the enhanced solution strategy. First the transport equations are presented and the

baseline solution algorithm is discussed. Then low-Peclet-number convergence problems are

demonstrated with a simple model problem. Lessons from the model problem lead to modi®cation of

the baseline solution algorithm and boundary condition treatment. Improved performance is

presented for three example chemical reactor problems.

2. TRANSPORT EQUATIONS

The governing equations used in this work describe the conservation of mass and the transport of

momentum, energy and chemical species and are suitable for chemically reacting ¯ows with

multicomponent transport. The low-Mach-number approximation is used where the pressure is split

into dynamic and thermodynamic parts and the viscous dissipation term is dropped from the thermal

energy equation. Only laminar ¯ows are considered.

The differential form of the governing transport equations is given for the purpose of presentation.

The axisymmetric governing equations are written in a cylindrical co-ordinate system where the axial

co-ordinate is x, the radial co-ordinate is r and the circumferential co-ordinate is y. The procedure for

deriving the ®nite volume discretization in generalized co-ordinates from the differential equations is

found in Reference 14.

Continuity
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The axial and radial velocity components are u and v. The circumferential velocity is w.

Axial momentum
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Radial momentum
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The circumferential velocity can be rewritten in terms of the angular velocity so that the

circumferential momentum equation more closely resembles a general SIMPLER transport equation.

Temperature
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The temperature equation is derived from the energy equation by subtracting out the kinetic energy

and chemical heats of formation. The mixture-averaged thermal conductivity is k, species enthalpies

are hg and chemical kinetic mass source terms are _og. The mixture-averaged speci®c heat Cp has

been moved inside the spatial derivative for the heat conduction term to make the equation appear as

a general SIMPLER transport equation. The gas phase chemical species are referenced by the

subscript g and summations occur over the total number of species, NS.

Species
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The governing equations are closed by de®ning the diffusive transport terms15 t and jg and the

chemical kinetic and thermophysical properties.16±18

3. BASELINE SOLUTION ALGORITHM

The baseline solution algorithm described in this section is the standard implementation of the

SIMPLER algorithm in the CURRENT code without enhancements. The transport equations are

discretized as ®nite volumes on a body-®tted, multiple-block, staggered grid. The equations are

linearized and solved in a segregated manner using line relaxation. Boundary conditions are updated
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explicitly. In the following discussions a basic understanding of the use of the SIMPLER algorithm to

solve transport equations is assumed.

3.1. Linearization and solution

The transport equations are written as convection and diffusion operators with a source term:

H ? �rufÿ GfHf� � Sf; �7�
where f is any solution variable, Gf is a diffusion coef®cient and Sf is the source term containing the

remaining physical terms. The collection of convection and diffusion terms forms the standard

SIMPLER transport operator for the transport variable f. The equations are discretized on a nine-

point stencil in two dimensions on a staggered grid system. The linearization is performed by freezing

coef®cients of the transport operator and the source term. The matrix elements for one ®nite volume

of the linearization of equation (7) are written as

Apfp � Anfn � Asfs � Awfw � Aefe � S; �8�
where the subscripts `p', `n', `s', `e' and `w' denote positions in the implicit ®ve-point stencil. The

stencil points are shown in Figure 1 (see Section 4.2). The corner points used in cross-derivative

terms are moved to the source term, so that the source term S contains the physical terms Sf and

numerical difference terms from the transport operator.

The steady state solution strategy for the governing equations consists of outer iterations on the

non-linear problem. At each outer iteration of the non-linear problem a set of linear problems is

solved with inner line relaxation iterations. The line relaxation scheme is localized on each grid

block, but new information is passed immediately across block boundaries during the sweeping

procedure. The procedure consists of three sequences of alternating northward and eastward sweeps.

In the segregated solution strategy for the multicomponent Navier±Stokes equations each equation

is solved sequentially. First the pressure equation is solved, followed by the scalar transport

equations: circumferential velocity, temperature and then chemical species. The number of species

equations solved is one less than the number of gas phase species. The mass fraction of the last

species is found from the constraint that the sum of the mass fractions must equal one. After the scalar

equations are solved, the thermophysical properties are updated. Next the axial and radial momentum

equations are solved to ®nd the axial and radial velocities. The velocities from the momentum

equation are corrected to satisfy continuity by solving the pressure correction equation.

Usually, continuity cannot be satis®ed until all equations converge. The problem with the

continuity equation is due to the use of Neumann boundary conditions on all boundaries in the

pressure correction equation. During the intermediate non-linear iterations it is useful to at least

enforce global conservation by scaling the out¯ow velocity.

The implementation of the species diffusion ¯uxes merits special attention. The species mass

diffusion ¯uxes jg are functions of both mass and thermal diffusion and are de®ned by the

multicomponent diffusion equation.15 The diffusion equation can be manipulated into a form that is

more readily applied in the SIMPLER algorithm:6
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The multicomponent diffusion coef®cients are �Dg, the binary diffusion coef®cients are dij, the

thermal diffusion coef®cients are DT
i and the molecular weight is W. The jg-terms that occur in

equations (5) and (6) are replaced with the right-hand side of equation (9), where the ®rst term is used
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in the SIMPLER transport operator and the terms in square brackets go into the source term. Equation

(9) must ®rst be solved for the jg as a closure equation.

3.2. Boundary conditions

There are two types of boundary conditions: conditions at physical boundaries and conditions at

grid block interfaces. The interface conditions are the result of the block-by-block solution algorithm

for the linearized equations. The numerical implementation of boundary conditions is aided by ghost

cells which are used to calculate ¯uxes and averages at boundaries and interfaces.

Most boundary conditions are updated explicitly in the baseline CFD code. Only in the pressure

and pressure correction equations are the boundary conditions implicitly coupled to the interior

equations. The ghost cells used to couple grid blocks along block interfaces are locally explicit but

are updated during line relaxation sweeps so that information propagates across the blocks.

Dirichlet conditions are traditionally applied at an in¯ow boundary, but they may not preserve the

correct species mass ¯ow rates when the ¯ow is highly diffusive. If there is a gradient in chemical

composition near the in¯ow boundary, then a more stringent condition for preserving species mass

¯uxes is applied:

_mg

A
� ruYg � jg: �10�

The correct composition of chemical species entering the reactor is arti®cially imposed instead of

moving the grid boundaries far away from the source of the composition gradient. The ghost cell

values for the mass fractions at the in¯ow boundary are set such that the sum of the species

convective and diffusive ¯uxes satis®es the imposed species mass ¯ow rates _mg. In addition, the

temperature in the in¯ow boundary ghost cell is ®xed at the upstream value, while the velocities are

adjusted such that they satisfy the speci®ed mass ¯ow rate:

_m

A
� ru: �11�

At an out¯ow boundary, variables are extrapolated from the interior to the ghost cells. The

boundary velocity is also extrapolated from the interior. Since the extrapolation for the boundary

velocity does not necessarily satisfy continuity, the out¯ow velocities are scaled to satisfy global

mass conservation.

There are two types of solid wall boundary conditions: reacting wall and non- reacting wall. For

both wall boundary condition types the temperature is prescribed. When there are no chemical

reactions on the surface, the normal velocity is zero and species gradients are zero. When the wall is

chemically reacting, surface reactions convert gas phase chemical species to surface phase, bulk

phase and other chemical species. A non-zero Stefan velocity can be generated at the wall and is

found by summing the production rates _sg for gas phase species on the surface:

u ? n � 1

r
PNS

g�1

_sg: �12�

The surface chemical production rates are calculated19,20 from mass fractions which are extrapolated

from the interior to the wall. The production of surface species is assumed to be in a quasi-

equilibrium state about the gas phase species composition.
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4. LOW-PECLET-NUMBER CONVERGENCE PROBLEM

The SIMPLER algorithm, described brie¯y in the previous section, converges slowly at low pressures

where the Peclet number for mass diffusion is low. The root of the low-Peclet-number convergence

problem is the interaction between the solution procedure and the unfavourable scaling within the

chemical species mass-¯ux-preserving in¯ow boundary condition. A simple linear model problem is

used to demonstrate how convergence degrades with the species cell Peclet number. Chemical

reaction rates, which usually cause convergence problems in reacting ¯ow computations, play a lesser

role in the convergence rate degradation. The reactions are relatively slow at low pressure and not

very energetic, so there is not a strong effect on the temperature. Surface chemistry is more

problematic than gas phase chemistry since it provides highly non-linear sources and sinks for gas

phase species at physical boundaries.

4.1. In¯ow boundary condition scaling

For low Peclet numbers, diffusive transport dominates convective transport, yet, for the limiting

case of uniform in¯ow composition and no chemical reactions, the convective transport term

determines the species distribution within the ¯ow domain. At low Peclet numbers it is dif®cult to

enforce the convective part of the boundary condition. The difference, or scaling, between the

strength of convection and diffusion makes it dif®cult to propagate information in the solution

procedure when the boundary condition is enforced explicitly.

The scaling problem is demonstrated using the in¯ow boundary condition, equation (10), where the

diffusion ¯ux is simpli®ed by the assumption of Fickian diffusion:

_mg

A
� ruYg ÿ rD

@Yg

@x
: �13�

Dividing by the total mass ¯ux, equation (11), gives

�Yg � Yg ÿ
D

u
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@x
; �14�

where �Yg � _mg= _m represents the reference in¯ow mass fraction for species g. The cell Peclet number

PeDx is de®ned by the length scale of the ®nite volume, Dx, the convective velocity and a mass

diffusivity D:

PeDx �
uDx

D
: �15�

The boundary condition is discretized about the in¯ow cell face using centred differences and the

explicit formula for updating the boundary point is

Yg;1 �
1ÿ 1
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The ghost cell mass fraction is Yg,1 and the ®rst interior cell value is Yg,2. For small limiting values of

the cell Peclet number the ghost cell mass fraction is more dependent on the interior point than the

reference value �Yg during the explicit update, yet the mass fractions must approach the reference

value when there are no chemical reactions or sources:

lim
PeDx!0

Yg;1 � Yg;2 � PeDx
�Yg: �17�
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Bad initial guesses for the mass fractions result in a very slow convergence to the actual solution. The

interior points are strongly dependent on the boundary points because of the elliptic nature of the

partial differential equations.

4.2. Linear model problem

The Peclet number scaling problem is demonstrated using a simple linear model problem. The

model approximates the multicomponent transport processes with simple diffusion, described by the

Laplace equation

H2f � 0: �18�
The `mass-¯ux-preserving' in¯ow boundary condition is set over part of the boundary and the rest of

the boundary has a zero-gradient condition:

fÿ 1

E
Hf ? n � 1; �19�
Hf ? n � 0; �20�

where n is the unit normal vector to the boundary. The Peclet number scaling is introduced as the

parameter E, even though there is no convection in the model. The solution to these equations is f� 1

and the initial guess is f� 0. For the purposes of discussion the scaling parameter E will be referred

to as the Peclet number Pe.

Equations (18)±(20) are discretized using centered differences on a uniform multiple-block grid.

The scalar variable f is located at the center of volumes formed by grid points. The grid consists of

three grid blocks, each of size 31611 points. The blocks stack on top of each other to form a square

grid, shown in Figure 1, with cells of unit length. The `in¯ow boundary' is the west face of the bottom

block 1.

The discrete linear equations are solved using a line relaxation scheme, analogous to the baseline

solution algorithm for the Navier±Stokes equations. Each iteration consists of four alternating

sweeps, followed by an explicit updating of boundary conditions. The ®rst forward sweep solves

coupled tridiagonal equations in the j-direction for lines of constant i in each grid block. The

sweeping proceeds through the grid blocks, propagating new information across interior block

boundaries. The second sweep solves coupled tridiagonal equations in the i-direction for lines of

constant j in each grid block. The ®nal two sweeps are similar to the ®rst two sweeps, but the sweep

direction is reversed.

A large number of line relaxation iterations are required to solve the equations when the scaling is

poor (small Peclet number) and the boundary conditions are evaluated explicitly. The convergence is

Figure 1. Three-block grid for model problem, with implicit matrix stencil
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plotted as a function of the L2-norm of the linear system residual in Figure 2. The number of iterations

required to converge the problem scales with 1
2
� 1=Pe. As the Peclet number increases, the number

of iterations required to converge the problem with the ¯ux in¯ow boundary condition approaches

that for a ®xed Dirichlet boundary condition f� 1.

The solution procedure is improved by implicitly coupling the physical boundary conditions in the

line relaxation scheme. Convergence improves by 25 per cent, but the work required is still excessive.

The boundary information is propagated implicitly in the direction of the line solve, but more

`explicit-like' in the sweep direction. The full set of physical boundaries which drive the interior

equations is not implicitly coupled. The explicit propagation of information is degraded by the

presence of internal block boundaries. Each physical boundary point should simultaneously see every

other boundary point, which implies that the linear problem must be solved exactly.

Matrix-free, preconditioned gradient algorithms provide an ef®cient solution to the boundary

communication problem. The method is similar to direct inversion, but there is no need to store

inverse matrix ®ll-in. The storage space requirements for gradient methods scale with the number of

unknowns. The generalized minimal residual (GMRES) gradient algorithm21 is used to invert the

linear system with the block-by-block line relaxation implicit scheme acting as a preconditioner. The

GMRES scheme enhances the implictness of the line relaxation scheme.

The convergence history for the enhanced implicit scheme is shown in Figure 3. The gradient

algorithm is not restarted for the model problem and the number of search directions is limited to 20

so that outer iterations on the problem are required. The residual norm is plotted as a function of the

number of preconditioning calls. Each preconditioning call is comparable in computational work to

one iteration of the line relaxation scheme alone. The overhead work of the gradient algorithm

effectively increases the amount of CPU time required for each preconditioning call by 30 per cent.

However, the addition of the GMRES scheme accelerates the convergence of the line relaxation

scheme by anywhere from a factor of four to 1000, depending on the cell Peclet number.

The amount of work required to converge on a ®ner mesh follows theoretical scaling laws for

relaxation-type schemes. When the number of mesh points is increased by a factor of 16 to three

121641 grids, the line relaxation scheme takes a greater number of iterations to converge,

demonstrated in Figure 4. The number of iterations required to reach the convergence tolerance

increases by roughly an order of magnitude. The convergence rate for the GMRES-accelerated

scheme on the denser grid behaves similarly to the line relaxation itself, shown in Figure 5.

Figure 2. Line relaxation convergence scales inversely with
Peclet number

Figure 3. Line relaxation convergence is accelerated by
GMRES
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5. ENHANCEMENTS TO THE NAVIER±STOKES CODE

The solution algorithm enhancements to the SIMPLER algorithm involve only the species equations

and the pressure correction equation. The modi®cations to the species equations follow those

described for the model problem where the boundary condition equations are treated implicitly and

the linear problem is solved to completion using a matrix-free, preconditioned gradient algorithm.

Though any gradient algorithm can be used, or even multigrid, the GMRES algorithm is selected for

this work. The GMRES algorithm is robust and only requires one application of the preconditioning

step per Krylov vector.

The underrelaxation used in the SIMPLER algorithm must be reformulated for use with the

enhanced solution strategy. The underrelaxation adds diagonal dominance to the linearized equations,

but it sharply degrades performance when there are Peclet number scaling problems. The

underrelaxation acts as an arti®cial time term, slowing down the propagation of information even

more. A more favourable implementation of underrelaxation is to apply the damping parameter to the

solution increment which results from the solution of the linearized equations.

A new problem arises when the linearized species equations are fully converged at each step: the

non-linear solution process becomes unstable. In the baseline algorithm, neither continuity nor the

linearized species equations are satis®ed exactly at each non-linear iteration. The errors tend to offset

each other and there are no large instabilities. Conversely, the enhanced solution algorithm does such

a good job of satisfying the transport equations that they become very sensitive to mass errors. Errors

in continuity cause arti®cial sources and sinks in the species equations. Stability is increased by

satisfying the continuity equation more rigorously.

The solution to the problem of converging the continuity equation is twofold. First, it is recognized

that continuity errors during iteration are due to the use of zero-gradient boundary conditions for the

pressure correction on all boundaries and incomplete convergence of the linear pressure correction

equation. The zero-gradient boundary condition on the pressure correction term does not allow

out¯ow boundary velocities to change. The out¯ow boundary condition is reformulated so that the

out¯ow velocity is corrected in a manner consistent with continuity. Secondly, the matrix-free

gradient algorithm is added to the solution algorithm for the pressure correction equation to

accelerate convergence.

Figure 4. Line relaxation convergence degrades with
increasing mesh density

Figure 5. Line relaxation convergence accelerated by
GMRES on denser grid
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The pressure correction procedure is reformulated in a manner consistent with other projection

methods for low-Mach-number ¯ows.22±24 The gradient of the pressure correction corresponds to a

velocity increment and the pressure correction variable itself is related to a pressure increment. In the

enhanced algorithm the pressure correction is set to zero at the out¯ow boundary ghost points. A non-

zero velocity correction is then calculated at the out¯ow boundary and the velocity is updated in a

manner consistent with continuity. Continuity is satis®ed in each ®nite volume at each non-linear

step. The zero condition also corresponds to ®xing the out¯ow pressure, since the pressure increment

is zero. This does not mean the out¯ow pressure is ®xed for the entire calculation, because the

pressure itself is still updated according to the SIMPLER algorithm.

The actual implementation requires matrix coef®cients at the out¯ow face. If the out¯ow is on an

east face, then a value for Ae would be required in equation (8) for the interior volume adjacent to the

out¯ow boundary. In the baseline algorithm the value of Ae is zero. In the enhanced algorithm the

matrix coef®cient is extrapolated from the interior.

6. EXAMPLE PROBLEMS

The effectiveness of the enhanced solution strategy is demonstrated for three manufacturing process

examples. All suffer from poor convergence due to a low Peclet number. Comparisons are drawn

between different solution algorithms in terms of convergence performance. In the baseline algorithm

the transport equations are solved according to the SIMPLER procedure as outlined in Section 3. In

the enhanced algorithm the modi®cations of Section 5 are applied to the species equations and the

pressure correction equation. Additional results are included for an intermediate algorithm where the

modi®ed pressure correction procedure is used, but the gradient algorithm is applied with explicit

boundaryconditions. Inallcases, improvedconvergence is realizedonlywith thefull setofmodi®cations:

implicitly coupled boundary conditions, full convergence of the linear algebra problem and modi®ca-

tion of the pressure correction equation. Performance enhancement requires more than just improving

the ef®ciency of the linear algebra solver with a preconditioned gradient algorithm.

Convergence is measured in terms of the L1-norm of the residual of the species equation. The L1-

norm is constructed from ¯ux balances over each control volume for each species equation, scaled by

the maximum species convective ¯ux. The residual norm can be misleading, since physical quantities

of interest often converge to within engineering accuracy long before the residual norm reaches the

limits of computer precision. A second measure of convergence is considered which is based on the

physical quantities extracted from the simulation. The number of iterations required to converge to

engineering accuracy is found by studying surface heat and mass ¯ux pro®les. The convergence of

surface mass ¯ux is plotted as a sequence of mass ¯ux pro®les at various iteration counts. All

example problems are run on a Hewlett Packard 735=125 workstation. The discrete governing

equations in the code are solved using dimensional quantities in terms of the metric CGS system.

6.1. SiO2 deposition

The growth of silicon dioxide dielectric in a rotating disc chemical vapour deposition (CVD)

reactor is a problem that involves gas phase and surface phase chemistry in a diffusive environment.

The baseline algorithm does not converge extremely slowly for this problem, but the enhanced

algorithm improves the average convergence time by over a factor of two.

In the CVD reactor, tetraethoxysilane (TEOS) gas is injected through a shower head arrangement

onto a heated substrate, supplying the silicon and oxygen for the deposition. Heat is conducted from

the substrate into the ¯uid and dissociates the TEOS gas into chemical precursors. The chemical

precursors react at the substrate with intermediate surface species to form solid silicon dioxide.
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6.1.1. Problem de®nition. The reactor grid is constructed from three mesh blocks, shown in Figure

6, with block sizes of 21641, 21616 and 21616 grid points. The reactor is axisymmetric about the

vertical centreline. Radial position is measured relative to the vertical centreline and axial position is

measured relative to the base of the out¯ow face.

The axial temperature distribution along the outer vertical wall is represented by a piecewise linear

curve, given in Table I. The growth substrate is maintained at 1000 K and rotates at 30 rpm. The

thermodynamic pressure in the reactor is 1 Torr. The process gas, a mixture of nitrogen and TEOS as

shown in Table II, ¯ows into the reactor at 300 K. The species Peclet numbers are based on the in¯ow

conditions and are given for a unit reference length of 1 cm: PeN2
� 0�27±0�57 and PeTEOS� 2�0±

4�2. These numbers are multiplied by the wall-normal grid spacing of 0�35 cm to form the cell Peclet

numbers.

Figure 6. Three-block grid for TEOS reactor

Table II. TEOS in¯ow conditions as a function of radial position

Inner 5�08 cm Outer 5�08 cm

Mole fraction XTEOS 0�5 0�75
Mole fraction XN2

0�5 0�25
Velocity Vin (cm s±1) 20 30

Table I. Wall temperature pro®le as a
function of axial position

Axial position (cm) Temperature (K)

0�0 300�0
2�54 320�0
5�08 400�0
7�62 380�0

10�16 340�0
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The gas phase species considered in the model are N2, Si(OC2H5)4, Si(OH)(OC2H5)3, C2H5OH,

C2H4 and H2O. A single gas phase reaction describes the thermal decomposition of TEOS into

triethoxysilanol and ethene,

Si�OC2H5�4 � Si�OH��OC2H5�3 � C2H4;

and the Arrhenius coef®cients for describing the reaction rate k � ATb exp�ÿE=RT � are

A� 4�961013 s±1, b� 0�0 and E� 61,460 cal mol±1. The water and ethanol species are by-products

of the surface phase reaction mechanism, given in Table III. A shorthand notation is used involving

the symbol G for describing the intermediary glass-like surface species required to form bulk

dielectric SiO2(D). The notation (D) indicates the solid material in this mechanism. The

computational solution indicates that the chemical precursors are fairly well distributed across the

substrate surface. One of the primary chemical radical precursors to the silicon dioxide deposition is

Si(OH)(OC2H5)3, shown in Figure 7.

The underrelaxation parameters are used differently between the baseline algorithm and the

enhanced algorithm, so they also take on different values to maintain stability. The baseline code uses

an underrelaxation value of 0�5 for the temperature equation and 0�9 for the species equations. With

the enhanced code the temperature equation is damped at a value of 0�9 while the species equations

are damped at a value of 0�5.

Table III. TEOS surface phase reaction mechanism

Reaction A b E

1. Si(OC2H5)4� SiG3(OH)� SiO2(D)� SiGE3�C2H5OH 2�56104{ 0�0 44600
2. SiG3E� SiG3(OH)�C2H4 1�261012 0�0 47000
3. SiG(OH)E2� SiG(OH)2E�C2H4 2�461012 0�0 47000
4. SiGE3� SiG(OH)E2�C2H4 3�661012 0�0 47000
5. SiG(OH)2E� SiG3(OH)�C2H5OH 1�461012 0�0 44000
6. SiG(OH)E2� SiG3E�C2H5OH 1�461012 0�0 44000
7. SiG(OH)2E� SiG3E�H2O 1�461012 0�0 45000
8. Si(OH)(OC2H5)3� SiG3(OH)� SiO2(D)� SiGE3�H2O 7�06100{ 0�0 12000

Surface site density 7�5610±10 mol cm±2, bulk density 2�19 g cm±3.
A in CGS units, b dimensionless, E in cal mol-1; see SURFACE
CHEMKIN manual.19

{ Reaction probability.

Figure 7. Triethoxysilanol mole fraction contours (A±R) in TEOS reactor
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6.1.2. Convergence performance. The convergence rate of the nitrogen species equation is shown

in Figure 8, with relative CPU costs per iteration given in the legend. The baseline code runs at a rate

of 1�28 s per iteration, while the enhanced code with the gradient algorithm runs at a rate of 3�45 s

per iteration. Even though the enhanced code runs 2�7 times slower per iteration than the baseline

code, the enhanced code converges to an engineering solution over twice as fast as the baseline code.

Surface mass velocity pro®les for the baseline code are plotted in Figure 9, showing convergence

after 1250 iterations. The convergence of the surface mass velocity for the enhanced code is shown in

Figure 10, with convergence occurring after 200 iterations.

In order to demonstrate that all the features of the enhanced solution algorithm are required for

improved performance, results for some algorithm variations are presented. If the enhanced algorithm

is changed such that all species boundary conditions are treated explicitly, the code converges at the

rate of the baseline code, but at twice the CPU cost per iteration, shown as the middle curve of Figure

8. Performance improvements are coming from the direct coupling of boundaries and not just from

the use of a more ef®cient linear algebra solver.

Although not plotted, two other intermediate solution combinations lead to similar poor

performance. The use of the baseline pressure correction strategy with the modi®ed species equation

Figure 8. Convergence history for TEOS problem

Figure 9. Surface deposition velocity pro®le as a function of
solution iteration for baseline code

Figure 10. Surface deposition velocity pro®le as a function
of solution iteration for enhanced code
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solver leads to baseline convergence rates. The continuity equation must be rigorously satis®ed. The

use of implicit species equation boundary conditions, but with line relaxation and the modi®ed

pressure correction solver, also leads to baseline convergence rates. The linear algebra problem must

be solved exactly so boundaries can communicate. The out¯ow boundary must know much species

comes in through the in¯ow boundary and how much species are generated at reacting surfaces in

order to satisfy conservation.

6.2. Chemical downstream etch

The chemical downstream etch (CDE) process uses a plasma to create chemical radical species for

the surface etching of material layers in microelectronic device manufacturing. The reactor consists

of a plasma generator, a plasma transport tube and an etch chamber. Plasma species are generated in a

plasma generator far upstream of the etch process. The plasma species recombine during the transport

phase so only neutral radical species reach the surface. The chemical radical species are transported

downstream to a substrate where they selectively etch certain materials. For this calculation, only the

transport of neutral species in the etching chamber is modelled.

6.2.1. Problem de®nition. A reactive gas mixture of F and NF3 ¯ows down over a substrate of

solid silicon and the etch products are exhausted out of the bottom of the reactor. The reactor

chamber, shown in Figure 11, is axisymmetric about the vertical centreline. The grid consists of three

blocks of size 31611, 31621 and 31611 grid points.

The gas phase species considered in the model are F, SiF4 and NF3. The in¯ow mole fraction

composition is XF� 0�4, XSiF4
� 0�2 and XNF3

� 0�4 and the temperature is 300 K. The

thermodynamic pressure is 10 mTorr and the in¯ow velocity is 940 cm s±1. The species Peclet

numbers are based on the in¯ow conditions and are given a unit reference length of 1 cm:

PeF� 0�049, PeSiF4
� 0�185 and PeNF3

� 0�145. These numbers are multiplied by the wall-normal

grid spacing of 0�5 cm to ®nd the cell Peclet numbers.

Figure 11. Three-block grid for chemical downstream etch reactor
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There are no gas phase reactions. In the single surface phase reaction the etch rate of bulk silicon

by atomic ¯uorine,

F� 0�25Si�B� � 0�25SiF4;

is described by a simple sticking coef®cient of 0�01. The surface site density is 4�17610±9 mol cm±2

and the bulk density is 2�33 g cm±3. The resulting contours of SiF4 mole fraction are shown in

Figure 12.

The underrelaxation parameters are used differently between the baseline algorithm and the

enhanced algorithm, so they also take on different values to maintain stability. The underrelaxation

parameters used with the baseline code are 0�5 for velocity and 0�25 for species. The surface reaction

rates are fast relative to the diffusion time scales and a damping coef®cient of 0�1 is required for the

species equations with the enhanced algorithm.

6.2.2. Convergence performance. The convergence rates for the baseline code and the enhanced

code are shown as the ®rst and fourth curves in Figure 13. The baseline code runs at a rate of 0�475 s

per iteration, while the enhanced code runs at a rate of 1�2 per iteration. Even though the enhanced

code runs three times slower per iteration than the baseline code, it reaches the engineering accuracy

norm of 3610±6 twenty times faster, shown in Figure 14. The baseline code requires at least 2500

iterations to converge to the correct surface mass ¯ux. The enhanced code converges in about 40

iterations.

It is important to combine both the modi®ed pressure correction and species equation strategies in

the enhanced algorithm. If explicit boundary conditions are used with the gradient solver for the

species equations, very poor performance is achieved, shown as the second curve in Figure 13. The

convergence rate is about an order of magnitude slower than the baseline algorithm. The difference

between using the old and modi®ed pressure correction strategies, along with the modi®ed species

equations strategy, is shown in the third curve of Figure 13. The modi®ed pressure correction solver

is worth a doubling in performance.

6.3. Methyltrichlorosilane injection

Cold methyltrichlorosilane (MTS) gas, CH3SiCl3, is injected and mixed into hot helium gas for a

silicon carbide CVD ¯ow tube experiment. The ¯ow tube is designed such that the gases are

Figure 12. SiF4 mole fractions (C±K) for CDE at 10 mTorr
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completely mixed at the exhaust. The ¯ow tube solution is very problematic for the baseline

algorithm.

6.3.1. Problem de®nition. The geometry consists of a cylindrical center plug with normal injectors,

inside a cylindrical mixing chamber, shown in Figure 15. The spherically capped center plug is

2�5 cm in diameter and the mixing chamber is 5�0 cm in diameter. The injectors are 1�0 mm in

diameter and are modelled as a continuous ring. The grid system consists of ®ve blocks of size

26626, 7626, 11626, 36621 and 36626 grid points. The grid is symmetric about the axial

centerline.

The ¯ow tube model is not a low-pressure problem, but it is very diffusive. The thermodynamic

pressure is 100 Torr. The MTS ¯ows in a rate of 500 sccm and a temperature of 300 K. The helium

¯ows in at a rate of 4500 sccm and a temperature of 1400 K. The species Peclet numbers are based

on the in¯ow conditions and are given for a unit reference length: PeHe� 0�037 and PeMTS� 300�0.

These numbers should be multiplied by the wall-normal grid spacing of 0�367 cm for helium and

0�0346 cm for MTS to ®nd the cell Peclet numbers. The MTS rapidly mixes with the hot helium and

contours of the MTS mole fraction are shown for the near-injector region in Figure 16. The mole

fraction of MTS for complete mixing is 0�1.

Figure 13. Convergence performance for CDE process

Figure 14. Surface mass ¯ux pro®les as a function of iteration for CDE process
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6.3.2. Convergence performance. The convergence history for the species equations, in terms of

the scaled L1-norm of the conservation laws, is plotted in Figure 17. The converged mixing levels are

approached after about 200 iterations. The enhanced code runs at about 6 s per iteration for this

problem. The convergence history for the baseline code is not shown because it is prohibitively slow

for this case. Well over 100,000 iterations are required with the baseline code. The enhanced

algorithm provides an acceleration of over a factor of 100 relative to the baseline algorithm.

Figure 16. MTS mole fractions near injectors

Figure 15. Five-block MTS grid system

Figure 17. MTS convergence performance for enhanced solution strategy
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7. CONCLUSIONS

An enhanced solution strategy based on the SIMPLER algorithm is presented for low-Peclet-number

mass transport calculations with applications in material processing. When the ¯ow is highly

diffusive, a chemical species ¯ux- preserving in¯ow boundary condition is imposed. The boundary

condition contains a scaling problem that causes the implicit line relaxation solution algorithm for the

species equations to converge very slowly. The convergence rate degrades as the species Peclet

number decreases.

The adverse interaction between the in¯ow boundary condition and the implicit line relaxation

scheme is ®rst demonstrated using a simple linear model problem. Explicit updating of boundary

conditions causes information to propagate very slowly between physical boundaries. In order to

improve boundary communication, the boundary conditions must be treated as implicit equations and

the linear problem must be solved to completion. In this work, full solution of the linear problem is

achieved by increasing the ef®ciency of the line relaxation scheme with a gradient algorithm.

Convergence for the non-linear Navier±Stokes equations is enhanced by modifying both the non-

linear and linear parts of the baseline SIMPLER algorithm. The modi®cations are applied only to the

species equations and the pressure correction equation. The boundary condition equations are

implicitly coupled to the interior equations during the linearization, so the linear matrix problem

contains equations for the boundary points. The linear problem is solved completely at each non-

linear iteration using a gradient method to accelerate the existing line relaxation method. A new

problem arises when the linearized species equations are fully converged at each step; the non-linear

solution process becomes unstable because of the lack of mass continuity. In the baseline algorithm,

continuity is not satis®ed exactly at each non-linear iteration. Boundary conditions for the pressure

correction equation are reformulated to ensure continuity is preserved in each ®nite volume at each

iteration.

The resulting code modi®cations are relatively non-intrusive, requiring few changes to validated

sections of code. The modi®cations to the solution strategy are consistent with the segregated strategy

of the SIMPLER algorithm. The approach is much more attractive than using a fully coupled Newton

method, because it is easier to increase the chemical complexity without running out of computing

resources.
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